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Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem
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It is well known, that the dynamics of small particles moving in a viscous fluid is strongly influenced by the
long-range hydrodynamical interaction between them. Motion at high viscosity is usually treated by means of
the Stokes equations, which are linear and instantaneous. Nevertheless, the hydrodynamical interaction medi-
ated by the liquid is nonlinear; therefore the dynamics of more than two particles can be rather complex. Here
we present a high resolution numerical analysis of the classical three-particle Stokeslet problem in a vertical
plane. We show that a chaotic saddle in the phase space is responsible for the extreme sensitivity to initial
configurations, which has been mentioned several times in the literature without an explanation. A detailed
analysis of the transiently chaotic dynamics and the underlying fractal patterns is given.
[S1063-651%97)10408-1

PACS numbgs): 47.10+g, 47.15.Gf, 47.52:j, 05.45+b

I. INTRODUCTION Hereu=u(r) is the velocity field,p=p(r) andf=f(r) de-
note the local pressure and force fields, respectively. Equa-
When microscopic objects move in a fluid, the stresses inion (1) expresses the incompressibility of the flow, while
the liquid due to viscosity may be several orders of magni€q. (2) is the dynamical equation obtained by neglecting the
tude larger than those due to inertia. A first estimate of thenertial terms in the full Navier-Stokes equation due to the

ratio slow temporal changes characterizing the process. The most
_ i o important simplification represented by the Stokes equations

(stress in fluid due to inertja (1) and(2) is that they are linear and instantanepdis These
(stress in fluid due to viscosity equations are solved subject to boundary conditions most

o often on the velocityu. Usually the so called “no slip”
is given by the Reynolds number Re as-RdJo/u, where  condition is prescribed on solid surfaces, which means that

L andU denote the characteristic length and speed of thene relative velocity between the fluid and the body vanishes
particle, 0 and u are the density and the dynamic viscosity g, the boundary1].

of the fluid. Collective phenomena involving the motion of |, this work we revisit a classical problem of viscous
assemblies of small particles in the low Reynolds numbeg. namely, the dynamics of three microscopic, non-

I|m|t_ cover gwgdeblra?r?e of n:teretst to bIOth tsc(:j|9r(1jt|st|s ar_1d rownian particles driven by constant external forces, like
engineers. Frobably the most extensively studied classic ravity, or electrostatic field. To achieve the highest possible
problem is the passive sedimentation of particles in th L - . ) ,

fesolution in the initial configuration space with acceptable

gravitational field[1]. A closely related system is that of computational demand. we used the simplest approximation
small charged or polarized particles in a viscous fluid driven P ' P pp

by an external electrical field, the dynamics of which is oftenc@PLUNNG the essence of hydrodynamical interaction, the

referred to as electrophoretic moti@]. Similar physics is  Stokeslet model, described below. The more complete
involved in another, more complicated example for transla->tCkes, or creeping flow, solutions for a couple of particles

tion in a strongly viscous environment, the swimming of €@n pe obtairjeq by a number of special techniqyes tailored to
microorganisms such as algae and bacteria. In a quiescefite Viscous limif1,5-15. Although these equations of mo-
fluid even their slow motioftypically a couple of meters per tion are relatively simple, long-range interactions and com-
day) can result in considerable spatial rearrangements, dyplicated boundary shapes usually require further simplifying
namic pattern formation, or bioconvecti¢8] due to hydro- ~assumptiong16]. Up to now, lattice Boltzmann techniques
dynamical interactions. [17,18 have come closest to realistic simulations of rather
The familiar approximation, which gives reasonably accu-large systems at wide Re ranges. In a remarkable recent com-
rate results up to Rel, is based on the Stokes equatiphs  putation, Ladd 19] treated 32 768 suspended particles at low
Reynolds numbers, and he could track the trajectories for

V.u=0, (1) about 500 Stokes time6A unit Stokes time is defined as the
time needed for an isolated sphere to pass over a distance of
—Vp+pAu+f=0. (2 one-particle radiug.In our Stokeslet model simulations, we

followed particle trajectories for several thousands Stokes
times from about a million initial configurations which
*Permanent address: Department of Atomic PhysicsydgdJni-  would have been unfeasible with more sophisticated tech-
versity, Puskin u. 5-7, H-1088 Budapest, Hungary. nigues.
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The paper is organized as follows. In Sec. Il we briefly _ n
outline the Stokeslet model far interacting particles. Next ri=e+z Ucri—ry, i=1,...n. (5)
(Sec. Ill) the motion of three particles in a vertical plane is J#

studied in the framework of this model. Results of high reso-
lution numerical simulations are presented in Sec. IV. WeWith the given expression dfl [see Eq.(3)], this defines a
show that a chaotic saddle existing in the phase space ®losed set of differential equations for the trajectorigs) of
responsible for the extreme sensitivity to initial configura-the different particles. Because particles are assumed to be
tions which has been mentioned several times in the literapointlike, vectorsr; andr; must not coincide but otherwise
ture without an explanation. A detailed analysis of the tranthey can take on any values. With a fixed set of initial con-
siently chaotic dynamics and the underlying fractal patternglitionsri(t=0)=r;q, i=1,...n, Eq.(5) has a unique so-
is given. Section V is devoted to a discussion of the range ofution.
validity of our results. We note that Eq(5) is invariant under the transformation
t——t,e—~—e¢, which means the reversal of time and the
Il. THE STOKESLET MODEL driving forc_e. Consequently, it i_s also invarignt under the
transformationt— —t,r;— —r; for i=1,2,3 at afixede. The
The simplest possible treatment of a viscous two-phasgystem is thuseversiblein the sense that there is an involu-
flow is based on the so-called Stokeslet mddél where the tion (a transformation that composed with itself yields the
moving objects are approximated by pointlike particles.identity) in phase space which reverses the direction of time
Hocking [20] first studied the motion of small clusters of [23]. In addition, the phase-space volume is conserved:
such _particles by means of this apprpximation in order tOEiVi'fFO, although there is dissipation in the systétris
explain related sedimentation experiments by Jayaweergq; Hamiltonian. As a consequence of this volume preser-
Mason, and Slack21]. Recent analytical treatments for a yation, however, the dynamics cannot have any attractor.
restricted class of initial configurations add to the interest in 1 is \worth mentioning that this equation is similar in spirit
the Stokeslet approximatid22]. _ to that describing the dynamics of ideal point vortices in a
The Stokeslet velocity distribution is the solution to EQ. yyo-dimensional fluiq24,25. They are also freely advected
(2) with a little spherical particle of radiua moving with i the flow field induced by the others. The vortices do not
velocity v, in an unboundt_ad fluid whi(_:h_ is at rest at infinity paye self-velocities ;= e=0), and the functionU(r) is
[16]. A particle momentarily in the origin generates the Ve-then proportional to t/according to the reciprocal distance
locity field dependence of the velocity field around a single vof&X.
Therelative motions of the particles are unaffected by the
constant ternvg or e. For this motion, an alteration of length
scale in the configuration is equivalent to a change in the
time scale, since the remaining terms in E%).are homoge-
Heree is the unit vector in the direction of the self-velocity neous functions of the positions. Without any loss of gener-
Vo=voe, I =|r||, and terms of(a®/r3) are neglected. In the ality, any convenient length in the initial configuration can
case of sedimentation, e.gg, is the unit vector pointing De chosen as a urfi20].
downward along the verticak] axis. In the following, how-

u(r)= 3avo(e (en)r

F+r—3)=av0U(r), r>a. 3

ever, we usually refer te as directed vertically upward in IIl. THREE PARTICLES IN A PLANE
order to emphasize the generality of the treatment, and indi- _ _
cate the relevance to, e.g., electrophoresis, too. The analytical solution of Eq(5) for n=2 (the two-

Let us now considen particles which would all have the particle problemis not difficult[1]. It corresponds to a par-
same steady state velocity if they were isolated. In the allel displacement of the pair in a direction being, in general,
case of sedimentation or electrophoresig=Fo/(67una)  different from that of the driving force. The first nontrivial
due to Stokes law, wherE is the modulus of the constant case is the motion of three particles. Although the trajecto-
external force. Then, particlegenerates a velocity(r—r;)  fies from a general initial configuration can be tracked only
at pointr. The linearity of Eqs(1) and (2) implies in the — numerically, useful exact results are known for special con-
lowest order approximation that we can use free superposfigurations. Already Hocking recognized a conservation law
tion. Thus, the velocity distribution due to particles is [20]: The horizontal projectiofimore generally, a projection
3" ,u(r—r;). At position r; of particlei the background —alonge) of the triangle formed by the three particles is of
flow generated by the other— 1 particles isS!, u(r;—r;). constant area. Thus an initial configuration of zero projected

In the lowest order approximation one assumes that the v rea leads to a motion in a vertical plane. Periodic solutions
locity of th ticler- atr- in the laboratory f is th elonging to symmetric initial configurations of nonzero pro-
ocity of the particier; atr; in the laboratory frame IS the jected area have been discussed by several authors

sum of this passive advection velocity angl [20,22,26
n The three-particle problem in a vertical plane has also
b =veta Uri—r), i=1,...n. 4 attrgcted considerable |nter§&0,21,6—8,10,1]5 Penpdm
o vO; (ri=ry) @ orbits were not found. Typically, after some “mixing”

phase, during which the particles totally change their relative
It is useful to measure the length and the time in unita of positiors compared to the initial configuration, a couple is
and a/v, (Stokes timg respectively. The dimensionless formed and the third particle lags behiisee Fig. 1 (A
form of Eq. (4) then is couple moves faster than an isolated partjclé.is also
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3000 FIG. 2. (Color) The growth of the Euclidean distandebetween
unperturbed and perturbed trajectories as a function of tinfdne
2000 blue, yellow, and red particles started from the same heigit at
the horizontal locationg=—2.9510, — 1.0, and 1.0, respectively.
1000- The initial perturbation imposed on the blue particle was
8x=10"10 The exponential fit(black has a slope of 0.038
i f +0.001 for each of the particles.
~l00 -0 0 50 =30 0 50
X X called the initial condition space, or the phase space, of the

test particle(at fixed inital condition for the other two
FIG. 1. (Color) Numerical solution of mode) from two initial

configurations for 19 Stokes times. The particles started from the

same height z=0. The horizontal locationsx were (a) IV. RESULTS
(—3.9050;-1.0,1.0, and(b) (—3.9048-1.0,1.0. The color coding . . . . . .
for both cases igblue, yellow, reg. Note that the particle left We first show the trajectories obtained by two simulations

behind and the length of the mixing phase are very different. ~ With slightly different initial conditiongsee Fig. 1 The ul-
timate separation into a couple and an isolated particle is

known from experiment§21] and simulationg§20,7,§ that ~ clear in both cases. A tiny change in the relative posit_io_ns
the final configuration dependery sensitivelyn the initial ~ results, however, in a strong rearrangement. The mixing
one. phases, during which all particles stay close to each other,
We have systematically studied the Stokeslet model fopave drastically different durations. Note, furthermore, that a
three particles in a vertical plane. By introducing relativecompletely different particle is left behind in these two cases.

coordinates ;,=r,—r; andr,=r;—r,, we find for the rela- We are now in a position to quantitatively characterize
tive motion this sensitivity to initial conditions. A perturbation
ox(t=0)=10" 1 was imposed on only one of the particles.
F15=U( 23) = U(T 15+ I 23), (6a)  (Note that a perturbation on a single particle changes all the
trajectories as a consequence of strong hydrodynamical in-
F 3= U(F 19+ 99 — U(I'10). (6b)  teraction) We determined the Euclidean distance

A=(xp—Xy)*+(z,—2,)° for each of the three particles,

Here we have utilized thdt(r) is an even function. Note where the subscriptp and u belong to the perturbed and
that after the restriction to two-component vector variablespnperturbed positions at the same time. Figure 2 shows that
Eq. (6) still preserves the phase-space volume. In spite of thighe divergence has an overall exponential time dependence
and the aforementioned reversibility property, E).cannot  A(t)~exp(t), and the fit gives an estimate for the fitki-
be written in a Hamiltonian forni27]. In fact, the system cal Lyapunov exponenh =0.038+0.001. Because of the
seems to have no global conserved quantities. We solvegbversibility property and the continuous time dependence,
these equations with a step-adaptive fourth order Runge=q. (6) must have three othdfocal) Lyapunov epxonents.
Kutta algorithm[28]. The simplicity of Eq.(6) allowed us to  Two of these vanish, and the last one-ia [29]. Note that
use a much higher resolution than in previous experimentadther values of the first local Lyapunov exponent were ob-
or numerical studies. tained in the range between Qower-law divergendeand

The phase space of this system of equations is four di0.1 depending on the initial configurations, but we found
mensional. In order to gain insight into the complex geo-values around 0.04 to be representative. The positivity of the
metrical structures underlying the dynamics, we fix one offirst Lyapunov exponent is a clear indication cfiaos In
the relative coordinates,;,, at time zero, and monitor the fact, this kind of chaos is of transient typa0], and has a
changes due to varying the other initial coordingtge. The finite average lifetime.
(x,z) plane defined by the two components rgg will be This situation is rather similar to what is called chaotic
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FIG. 3. (Colon Numerical solution of mode(5) for 10° Stokes cated by dotted lines.

times illustrating a scatteringlike process. The particles started from
the following (x,z) initial positions: Red(—169.697 802, 0,9  Stokeslet model above correspond to placing the particles
yellow (—164.658129, 0.973979 and blue (-12.157 925, into the interaction region. We can, however, easily find
694.086 9268 Note that the couple formed after the scattering other initial conditions where the motion starts with a phase
event need not .coincid.e with the initial one. In this respect thegt approach. An example is shown in Fig. 3. The analogy
example shown is special. with a scattering process is clear: The asymptotic state and
the interaction region correspond to configurations when at
scattering[31]. The latter occurs in Hamiltonian systems least one particle is far away from the others, and when all
characterized by a complicated interaction at short distancebree particles are close to each other, respectively. In fact,
but without any interaction at asymptotically large distancesthe stay in the mixing phase is the analog, in the language of
Examples are the motion of a single particle in a nontrivialchemical reactions, of the creation of an intermediate com-
potential of finite extension or classical models of chemicalplex of finite lifetime.
reactions[32]. Incoming particles then undergo a free mo- The lifetime distribution, i.e., the duration of the stay in
tion, later they enter the region of strong interaction andthe interaction region is known to be a rather irregular func-
depending on their initital conditions, spend a longer ortion in chaotic scattering. This irregularity is due to the ex-
shorter time in this region. Ultimately all the particles escapestence of an underlyingivariant chaotic saddI¢30], which
to infinity in a free motion. The initial conditions used in the is a globally nonattracting set, and cannot be reached exactly.
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FIG. 5. (Color Four sections of the initial condition space of the test particle. Particles 1 and 2 start always from the same
[x(t=0),z(t=0)] positions.(a) Top left, (—1,6) and(1,6); (b) top right, (-1,6) and (1,6.7); (c) bottom left(—1,6) and(1,7.9; (d) bottom
right, (0,—5) and(0,7), respectively. The final configurations from 640 000 initial points are indicated in each figure. Different colors denote
which particle isleft behind Red, particle 1; yellow, particle 2; blue, test particle. The thin white squares on the upper left panel show the
regions zoomed with higher resolutions in Fig. 6.

Particles, however, can come arbitrarily close to it and exthree particles, we say that an “escape” of a couple is es-
hibit chaotic motion before escaping. The chaotic saddle ittablished, if itsvertical distance from the third particle left
self is a fractal with a local structure resembling the directbehind exceeds a threshatg. We found that at separations
product of two Cantor sets in certain regions. It contains arz.=100.0 the particle which is left behind has a negligible
infinite number of bounded orbits. Furthermore, there existénteraction with the pair, it moves vertically upwards with its
a complicated fractal curve, the so-called stable manifoldpwn self-velocity. The lifetime or escape tinte depends
along which particles can hit the saddkthough, as men- sensitively on the initial configuration. To illustrate this, we
tioned above, the probability of falling exactly onto this fixed the initial value ofry, to be (2,0) by letting particles 1
curve is zero, because it is a fragtdPoints where the life- and 2 start in ¢ 1,6) and (1,6), respectively, and simulated
time distribution takes on infinitely large values correspondseveral trajectories with initial,5=(x,z) values in a broad
to initial conditions falling exactly on the stable manifold. range. The lower part of Fig. 4 shows the dependence of the
Numerically very large values can really be obtained belongescape time on the test particle’s initialcoordinate at two
ing to trajectories starting close to the stable manifold, andixed initial heightsz. The distributions are rather irregular
staying therefore a long time around the saddle. with regions of very wild changes over several orders of
In order to measure a lifetime distribution in the system ofmagnitude in the escape tirfie The color plate was obtained
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FIG. 6. (Colon Enlarged regions of the phase-space section 5 7 (cColon Top: escape-time distribution in the forward and
shown in _F_lg. 5a)._ The_ resolution is proportionally mcrgas_ed, backward dynamics on thex(z) plane forr,=(2,0). (The back-
§40 000 initial cgnflguratlons are plotted. The color coding is iden-, o .4 dynamics was evaluated explicitly on the original grid, it is
tical to that of Fig. 5. not a mirror image. Hence the agreement with the reflected pattern
is a direct assessment of the quality of the resolutidime color
by distributing initial points on the rectangléx|<7,  scale from red across yellow, green, and blue to violet indicates
0<z<14 uniformly. The color coding corresponds to the increasing time from 0 to 20 000 Stokes uriité. Fig. 4). Bottom:
value of the escape time. Note that the escape time is vemie chaotic saddle on thex,£) plane, i.e., initial configurations
short close to the other two particlgse., around the points belonging to long triplet orbits in both temporal directions are indi-
(—=1,6) and(1,6)], because the velocity field diverges in the cated by the black dots.
vicinity of any particle. Points with escape time on the order
of 10 000 Stokes unitéviolet) trace out with very good ac- of one of the other two particles. This is because exactly
curacy the chaotic saddle’s stable manifold. The complicatedymmetric initial configurations result in particle “colli-
winding and the fractal character of this curve is clear. sions,” which show up as divergences in the numerical in-
The coordinates of the test particle were chosen from artegration process.
(800x 800) grid with one of the grid points slightly dis- To obtain a further impression about the intricate phase-
placed bysx=6z=3x10 ' from the fixed initial position space structures, we consider now the same part of the test
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particle’s initial condition space as in Fig. 4, but with a dif- 10—t
ferent coloring. The colors now mean different escape con-
figurations: They correspond to the particle left behind in the
asymptotic state. Figurd® shows the results, Fig. 6 is mag-
nification of the regions denoted by white squares in Fig. ]
5(a). It is natural that if the test particle is close to any of the @ 10 4
other two, they form a couple and leave behind the particle Z
that was originally furthest away from them. Thus, big uni-
colored regions appear around the points1(6) and (1,6)
denoted by 1 and 2, respectively. It is less trivial that com- ]
pact regions of a given color can be found also further away. 10°
The most surprising fact is, however, that they are separated
by regions where different colors can come arbitrarily close 107 i
to each other. A comparison with Fig. 4 shows that this takes

place along the lines where the escape time is particularly

large, i.e., along the stable manifold. In fact this manifold has

an interesting topological properust as in other scattering

systems with at least three different exit moda8]): Any =
neighborhood of any point on the manifold contains all three &
colors(cf. Figs. 5, §. This shows that there is a strong mix-

ing of the escape modes along the stable manifold which is

another consequence of the sensitivity to initial conditions.

The dependence of the test particle’s phase-space struc- B N
tures on the initial position of particles 1 and 2 is illustrated 0 100 200 300 400 500 600
by Figs. 8b)—5(d). Here a sequence of, values were taken T
correspon(_jmg to initial allgnme_nts .deV|at|ng more and more FIG. 8. (a) Result of the box counting for the chaotic saddle
from a horlz_on_tal one, and endlng Ina vertl_ca_ll_ arrangementshown in Fig. 7. The size of the square boxes covering the image
The figure indicates that a _rotatlon of the initial vectgp of the fractal set is measured in pixels, the resolution of the whole
leads to a smooth deformation of the phase-space patternSmage was 808800 pixels. The slope of the power-law fit is

It is instructive to construct the chaotic saddle itself, or at_ 1 24+ 0.04. (b) Normalized escape-time statisti&(T) for the
least a part of it. Since the saddle contains all the points thabrward dynamics in thex,z) phase-space segment shown in Fig.
never escape either forward or backward in time, it can bg. The slope of the exponential fit is0.013+0.002.
obtained as the intersection of the stable manifolds of the
direct and time inverted dynamics. Due to the reversibilitythree-degree-of-freedom scattering systems with energy con-
property of Eq.(6) mentioned above, the latter is just the servation[36]. It is generally believed that a full chaotic
mirror image of the former with respect to the axs 6 saddle contains an infinite number of unstable periodic or-
[34]. In other words, we obtain a rather accurate picture obits, too[30]. This would imply that, in contrast to previous
the saddle by plotting points with very large escape times irstatements, the three-particle dynamics has unstable periodic
both types of dynamics. Figure 7 shows the escape-time disolution as well, although they might be rather unstable and
tribution of both the forward and backward dynamics on theof rather long periodicf. trajectories at around 880z< 3000
(x,2) plane with color coding. Points that belong simulta-in Fig. 1(a)].
neously to large values in both dynamics are plotted in black As a next step, one can determine some guantitative char-
in the lower part of Fig. 7 and correspond to points of theacteristics of the sadd[&5]. Figures 4 and 5 suggest that the
chaotic saddle in the initial condition space of the test parstable manifold in the four-dimensional phase space has a
ticle. Note the striking direct product structure. fractal dimension 3-D, with 0<D,<1. Consequently, on

Besides the typical asymptotic states formed by a couplehe initial condition plane it appears as a curve of dimension
separated from a single particle, the system has more excep-+D,,. Due to the reversibility property, the intersection of
tional asymptotic states in which all three particles are fathe stable and unstable manifolds in the full spacei2D,,
away from each other and move with their own self-dimensional. The chaotic saddle on Fig. 7 should thus have
velocities upward. In such three-singlet staf@? f’23:0_ dimension Dp. One of the simplest methods for measuring
Our numerical procedure with a long duration of integrationthe dimension of a fractal object is the box counting: The
and a large fixed, provides us with initial points that come number of two-dimensional boxeé(e) covering the saddle
after a long time close to a three-singlet state in both theés a function of box size scales with a nontrivial exponent
forward and backward dynamics. In other words, the blackDpox, See Fig. 8). The power-law fit gives an estimation
pointsr,; of Fig. 7 along withr1,=(2,0) correspond to mid Dpox=1.2. ConsequentlyD ,~0.6 is the partial dimension
states of complicated trajectories which can be reached aft@f the saddle along the stablenstabl¢ manifold on the
an infinitely long time from some initial three-singlet con- (x,z) plane of Fig. 7.
figuration and which decay towards another three-singlet Figure 8&b) shows the escape-time statistiegT), the
configuration. The property that the invariant manifolds ofprobability density for finding an escape tinfein a large
some asymptotic state provide a fractal foliation of the phasensemble of particles. In the time regime ¥5D<350 it
space(or initial condition spacehas also been observed in obeys an exponential dec®(T)~exp(—«T) with a decay
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rate k~0.013. This is an important fingerprint of transient -
chaos tod 30]. There is a fundamental relationship between

@ @
the partial dimensio®,, the decay ratec and the first av-
erage Lyapunov exponemt [30]: Dy~1—«/\. Our esti- -.I '[ X II."I. _
mated parameters are consistent with this relationship in the
given numerical accuracy. a— -
The sharp jump in Fig.®) at aroundT = 350 Stokes time -I I x - I -
is most probably associated with characteristic shapes in th e A A T s B

trajectories. In the mixing phase, the number of “knots,” =87
where the three particles move close to each other, has an

integer value. Starting from the |_n|t|al con_dltlons in the the experimental results of Jayaweera, Mason, and $REKbot-
phase-space segment shown in Figg)5we find that the tom band. Three particles sedimenting in a vertical plane from a

jump in P(T) belongs to trajectories with three knots. Orbits prizontal line. The positions of the red and the yellow particles are
with three knots have escape times dominantly arounGyed, indicated also by crosses in the bands. The blue test particle
T=350. This behavior is characteristic only in the large,starts from different initial positions. Color stripes show which par-
single-colored regions in the phase space where the traject@cle is left behind after a long time.
ries are not sensitive strongly to small changes in the initial
configurations. At smaller escape tlmgs most of_ the orbltsWe recover the nondimensional forrt or (6) with U re-
have only two knots. Interestingly, neither the single knot , .

: . . placed byU'. Thus we can implement the same method for
orbits (there are not too mamynor orbits with a larger knot

number have such a characteristic escape tiiNete that the numerical solutions. The result for the initial condition

there is no direct relationship between the escape time andfé)?gren OgrtigirgevsvtitﬁalgtildeEeI)mizh:o\(NZs,c?h;? gLor:gdnng;gétlu?.es
characteristic “meeting time” at the last “knot,” because P 9-

e ecape tme contans a neral durg whih he coup PS8 TSt vt e e pariees, bt e cuea)
moves away from the third particle to the critical distanceP P y :

z.=100) also recognize a slight global shrinkage of the corresponding
¢ ’ colored domains.
It is instructive to see the effect of different approxima-
V. DISCUSSION tions considering special trajectories. Durlofsky, Brady, and

We pointed out in Sec. IV that the dynamics of threeBOSSiS[S] show the trajectories of three sedimenting spheres

particles is chaotic, and it is associated with an invarianfn @ vertical plane starting from a line with a horizontal

chaotic saddle. Since the Stokeslet model of point particles

we used is the simplest approximation for describing hydro- 7
dynamical interactions in the zero Reynolds number limit,
we should discuss to which extent our results can be valid a
small but finite Reynolds numbers.

First of all, we compare the numerical results with related
experiments. Jayaweera, Mason, and Slgd performed
the first sedimentation experiment with three particles start-10.
ing from a line. Later, Ganatos, Pfeffer, and Weinbauth
developed a numerical method to calculate particle velocities
and drag coefficients for systems of identical spheres. The)
obtained a general agreement between the experimental ar
numerical results, however they noted some differences ani
pointed out again the sensitivity to initial configurations. We %
show a comparison between the experiments and our resuli ™~
in Fig. 9. We cannot expect a better agreement, especiall
due to the differences in the resolutions. In addition, the
experiments were performed with finite spheres, where rota
tion, neglected in our treatment, can modify the trajectories.

As for corrections to the lowest order approximation, we
have checked the effect dD(1/r®) terms. The simplest €0 X
Stokeslet velocity field Eq3) can be replaced in E¢4) by 30 0.0 30
the full solution[4]

FIG. 9. (Color) Comparison of the simulationgop band with

3avg[ e (er)r a’e a’(er)r

u'(r)y=

-+ =avoU’'(T) FIG. 10. (Color) Segment of the initial condition space,£) for
r 3 3 r° three particles of the modified velocity field E@) [cf. Fig. 5@a)].
(7) Particles 1 and 2 start from the positiofts1,6) and(1,6), respec-
tively, the third one is the test particle. The final configurations
of the Stokes approximation fulfilling the no-slip boundary from 640 000 initial points are indicated. The color coding is iden-
condition on the surface of the sphere. Using the proper unitscal to that of Figs. 5 and 6.
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FIG. 11. Numerical solution of modé¢b) for two different ve-
locity fields. The particles started from the same heighD. The
horizontal locationx were (a) (—5.0,0.0,7.258 velocity field (3);
and(b) (—5,0.0, 7.16% velocity field (7). Axis z is inverted.
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spacing(—5,0,7 (see Ref[8], Fig. 5b) ). Their full hydro-
dynamical model also accounted for near-field lubrication
effects and the dominant many-body interactions. The sam
initial configuration was used for benchmarking by Phillips ]
[15], who implemented also an accurate model, and repro
duced the trajectories almost identica(see Ref[15], Fig.
2(a)). Our simple mode(5) gives from the(—5,0,7) initial
configuration trajectories differing significantly from the
cited ones. On the other hand, direct examination of manyg i
orbits gave the result that small changes in the initial con-—
figurations alter “smoothly” the resulting trajectories in the
single-colored large regions in the phase sp&ég. 5). With iy
a simple trial and error method we located the initial con-
figuration (—5,0,7.258 which reproduced the trajectories
shown in Refs[8] and[15], see Fig. 1(a). Based on the
observation of the global shrinkage of the phase-space struc 0-97
tures by introducingO(1/r®) corrections, we found very
quickly the proper initial configuratiof—5,0,7.156 for the
mo.diﬁed. ﬁelq model(7) Whi(.:h also gives _almos_t identical FIG. 12. (a) Empirical distribution of the magnitudg| of the
tr.a.JeCtones[F'g' 1Ub)). It is likely thgt .the 'nC|u.S'0n of ad- . particles’ instantaneous velocities during the full simulation of Egs.
ditional terms, e.g., of thF’Se .descrlblng rotgt.lon, results i 6) and (3) with initial conditions in the phase-space segment of
better and better approximations and modifies further thesig 7 The inset shows the same distribution on a double logarith-
phase-space structures so that the initial configurations fqpic scale. The dotted lines are power-law fits for velocities both
the particular trajectories shown in Fig. 11 approach the “eX=maller and larger than the self-velocjtyf=1.0, the exponents are
act” ones for(—5,0,7. Nevertheless, we believe that the close to+5 and -5, respectively(b) Distribution of the instanta-
simplest Stokeslet approximation with the leadi®@f1l/r)  neous moving directiong with respect to the vertical axig¢he
terms captures already quite well the most essential featurggrticle left behind moves witthu| and 8=0). The dotted line
of the hydrodynamical interactions. shows a Gaussian fit exp(.033?). (c) Correlation diagram be-
Here we would like to emphasize that the CPU time fortween moving directions and velocity absolute values. The enve-
obtaining the exact trajectories with full hydrodynamics islope of the set can be well fitted with an exponential function
~12 h on a HP 715/100 workstati¢87], while the Stokes-  [Ulmin(|B])~exp(0.264]).

< 3T 7,

00
B [degree]
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let solution requires only 1:810 © h for a similar solution
plotted in Fig. 11.
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“microswimmer,” such as Eqs(3) or (7), therefore we
could not repeat the detailed analysis performed in the

We mentioned in the Introduction the problem of swim- framework of the Stokeslet model.

ming microorganisms. Although the hydrodynamical interac-

tion between algae or bacteria is certainly weak&8,39

In summary, we introduced the simplest Stokeslet model
for studying the hydrodynamical interaction between micro-

than that of, e.g., sedimenting particles, simply because the%cppic particles driven t?y external forces._ We iIIustr.at_ed the
are driven by internal forces, these interactions may contrib€fficiency of the approximation by a detailed description of

ute to the collective behavior. For example, it is a commori€ three-particle motion in a vertical plane, and pointed out
observation that “individual” trajectories tracked in an as- that the sensitivity to initial configurations is associated with

A chaotic saddle resulting in a chaotic scattering like dynam-
ics. Our resolution made it possible to locate the saddle and
terized by rather wide distributions of swimming direction quantltanvely characterize s dynamical and fractal proper-
. . . . ties. We argued that corrections do not alter the universal
and velocity. In Fig. 12 we illustrate that the fully determin- .
8hase—space structures drastically, thus even the Stokeslet ap-

istic Stokeslet dynamics can also lead to rather wide an T houl | h S1h
smooth distributions. Even more, the histogram of the mov_prOX|mat|on should be able to capture the essential hydrody-

ing directions[Fig. 12b)] can be well approximated with a hamics in an interacting assembly.

Gaussian, which is usually attributed to “pure” random  This work was patrtially supported by NATO under Grant
noise. In our approach the stochastic behavior is due to Blo. CRG960634 and the Hungarian National Science Foun-
deterministic internal dynamics which is strongly chaotic.dation (OTKA) under Grant Nos. T17493, T19483, and
Unfortunately there is no well established simple far-fieldF014967. Helpful discussions with A. Bringer, Z. Koga
approximation for the velocity around a self-driven smalland L. Wiesenfeld are acknowledged.

(see, e.g., Fig. 2 i@39]). These trajectories can be charac-
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